Semi-automated three-dimensional reconstructions of individual neurons reveal cell type-specific circuits in cortex.

نویسندگان

  • Zimbo Srm Boudewijns
  • Tatjana Kleele
  • Huibert D Mansvelder
  • Bert Sakmann
  • Christiaan Pj de Kock
  • Marcel Oberlaender
چکیده

Despite a long history of anatomical mapping of neuronal networks, we are only beginning to understand the detailed three-dimensional (3D) organization of the cortical micro-circuitry. This is in part due to the lack of complete reconstructions of individual cortical neurons. Morphological studies are either performed on incomplete cells in vitro, or when performed in vivo, lack the necessary cellular resolution. We recently reconstructed the in vivo axonal and dendritic morphology of two types of L(ayer) 5 neurons from vibrissal cortex. The 3D profiles of short-range as well as longrange projections indicate that L5 slender-tufted and L5 thick-tufted neurons represent very different building blocks of the cortical circuitry. In this addendum to Oberlaender et al. (PNAS 2011), we motivate our technical approach and the advancements this may give in reconstructing the cortical micro-circuitry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Reconstruction and Standardization of the Rat Vibrissal Cortex for Precise Registration of Single Neuron Morphology

The three-dimensional (3D) structure of neural circuits is commonly studied by reconstructing individual or small groups of neurons in separate preparations. Investigation of structural organization principles or quantification of dendritic and axonal innervation thus requires integration of many reconstructed morphologies into a common reference frame. Here we present a standardized 3D model o...

متن کامل

Cell Type–Specific Three-Dimensional Structure of Thalamocortical Circuits in a Column of Rat Vibrissal Cortex

Soma location, dendrite morphology, and synaptic innervation may represent key determinants of functional responses of individual neurons, such as sensory-evoked spiking. Here, we reconstruct the 3D circuits formed by thalamocortical afferents from the lemniscal pathway and excitatory neurons of an anatomically defined cortical column in rat vibrissal cortex. We objectively classify 9 cortical ...

متن کامل

Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch.

The cortical output layer 5 contains two excitatory cell types, slender- and thick-tufted neurons. In rat vibrissal cortex, slender-tufted neurons carry motion and phase information during active whisking, but remain inactive after passive whisker touch. In contrast, thick-tufted neurons reliably increase spiking preferably after passive touch. By reconstructing the 3D patterns of intracortical...

متن کامل

3-dimensional electron microscopic imaging of the zebrafish olfactory bulb and dense reconstruction of neurons

Large-scale reconstructions of neuronal populations are critical for structural analyses of neuronal cell types and circuits. Dense reconstructions of neurons from image data require ultrastructural resolution throughout large volumes, which can be achieved by automated volumetric electron microscopy (EM) techniques. We used serial block face scanning EM (SBEM) and conductive sample embedding t...

متن کامل

SegEM: Efficient Image Analysis for High-Resolution Connectomics

Progress in electron microscopy-based high-resolution connectomics is limited by data analysis throughput. Here, we present SegEM, a toolset for efficient semi-automated analysis of large-scale fully stained 3D-EM datasets for the reconstruction of neuronal circuits. By combining skeleton reconstructions of neurons with automated volume segmentations, SegEM allows the reconstruction of neuronal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Communicative & integrative biology

دوره 4 4  شماره 

صفحات  -

تاریخ انتشار 2011